First open source all-atom models of Covid-19 protein developed

A team of scientists has produced first open source all-atom models of full-length COVID-19 Spike protein that facilitates viral entry into host cells — a discovery that can facilitate a faster vaccine and antiviral drug development.

The group from Seoul National University in South Korea, University of Cambridge in the UK and Lehigh University in the US produced the first open-source all-atom models of a full-length S protein.

The researchers say this is of particular importance because the S protein plays a central role in viral entry into cells, making it a main target for vaccine and antiviral drug development.

“Our models are the first full-length SARS-CoV-2 spike (S) protein models that are available to other scientists,” said Wonpil Im, a professor in Lehigh University.

“Our team spent days and nights to build these models very carefully from the known cryo-EM structure portions. Modeling was very challenging because there were many regions where simple modeling failed to provide high-quality models,” he wrote in a paper published in The Journal of Physical Chemistry B.

Scientists can use the models to conduct innovative and novel simulation research for the prevention and treatment of Covid-19.

Though the coronavirus uses many different proteins to replicate and invade cells, the Spike protein is the major surface protein that it uses to bind to a receptor.

The total number of global COVID-19 cases was nearing 9 million, while the deaths have increased to over 467,000, according to the Johns Hopkins University.

With 2,279,306 cases and 119,967 deaths, the US continues with the world’s highest number of COVID-19 infections and fatalities, according to the CSSE.

Brazil comes in the second place with 1,083,341 infections and 50,591 deaths.

Share on facebook
Share on twitter
Share on linkedin
Share on pinterest
Share on whatsapp
Share on email